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Figure 1.   Floor tiling from the Lady Chapel, 

Ely Cathedral, UK 

Mathematics Lessons from regular Floor Tilings 
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Regular floor tiling patterns can be used to motivate a variety of mathematical 

discussions and investigations for students through a wide age range.  In this 

paper, I discuss material I have used directly with children from 8 years of age 

up to 15 years.  Some of the ideas could be adapted for use with younger or older 

students also.  I consider it very desirable for the students to view the floor 

tilings in situ whenever possible.  Some of the ideas discussed here have come 

from viewing the tilings from different angles, which is not possible working 

simply with photos or drawings.  This will also help younger children to think 

about the differences angle and perspective make to how we look at a pattern.  

The mathematical areas covered include proportion and fractions; symmetry; 

number patterns; deriving algebraic formulae; programming.  
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1. Proportion, fractions and 

symmetry  

   Patterned floor tilings can be used to 

motivate work on proportion, fractions and 

symmetry, and will lead to rich 

mathematical discussions.  The ideas in this 

section have been successfully used with 

several groups of children aged 8 to 11.  

Simplifying the pattern unit further would 

make these ideas accessible to children from 

about 6 or 7 upwards. 

   Ely Cathedral is a medieval building, and the Lady Chapel dates from the 14
th

 

century.  The floor tiles are modern, but use designs found in the entrance to the West 

Door of the Cathedral which date from the 19
th

 century (Figure 1).   

   Ideally the children should see floor tilings in situ, and be able to view them from a 

variety of angles, discussing the shapes and patterns that they see.  If this is then 

followed up with photos when the class is back in school, interesting questions about 

orientation and perspective can be discussed.  If a site visit is not possible, then it will 

be necessary to work just from photos.  Making similar 

designs on a table top with card tiles will help children to 

see that the angle from which a pattern is viewed does not 

actually change the pattern, although it may change our 

perspective.  They can also investigate whether rotating a 

pattern changes it in any fundamental way.   

     After an initial discussion, the pattern unit shown in 

Figure 2 was used for more detailed follow-up work, with a 
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Figure 2.   Pattern unit 
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Figure 3.   Tiling pattern 

with half the tiles coloured 

dark and half light 

worksheet (which can be downloaded from 

http://motivate.maths.org/teachers/MathsArt/PatternsNumbersWorksheet.pdf) with 

six outlines of the unit on it. 

   The first activity for the children was to colour one outline so that it looked like a 

section of the real floor or photo.  This is not a trivial activity for many children, 

requiring them to look carefully at what they see and to record it on a diagram, which 

is abstracted from reality, and which uses a half size triangular tile.    

   We then discussed what fraction and what proportion of the triangles were in dark 

and light colours.  Once everyone was happy that half the triangular tiles were light 

coloured and half were dark coloured, and that in this pattern unit we need 8 out of 16 

triangular tiles to be in each colour, the next activity was for them to colour in the 

remaining seven outlines so that in each case (a) exactly half the triangular tiles were 

light and half were dark, and (b) each colouring was different from all the others. 

   Once children had completed this task, we reviewed their 

designs.  The first question we discussed was whether 

different children had produced designs the same as each 

other.  This raised issues about whether the inverse colour 

scheme is the same or not and whether the same design 

rotated through 90 or 180 degrees is the same or not.   

   We then looked at the symmetry their coloured designs 

showed.  How many lines of symmetry are possible?  It 

appeared that you can have none, 1, 2 or 4, but not 3.  Why 

is that?  Could there be more than four lines of symmetry, 

and if not, why not?  And what about a design like Figure 3?  

It has no lines of symmetry, but it appears to be 

symmetrical.  How can we describe this? 

   These discussions focused on a pattern in which half the tiles are light and half dark.  

One group of children also discussed why the pattern was half light and half dark, 

considering aesthetic and symbolic issues in a church setting, and the use of ‘light’ 

and ‘dark’ as metaphors.  This discussion arose from a chance remark by a teacher 

with this particular group, and was a particularly interesting development of the 

general theme.   

   The activities described above could be further extended to patterns in which some 

other proportion was coloured dark or light, such as a third, or a quarter or an eighth, 

or other fractions of the whole.  Like the symmetry discussion, this raises questions 

about what fractions can be shown on a pattern like the one used, and why this is so. 

2. Number patterns and sequences (pre-algebra) 

The floor tiling in the Choir of Ely Cathedral (Figure 

4) has been used with several groups of children in 

the 9-12 age range for work on number sequences.  

Viewing a pattern like this in situ means that 

questions can be asked about the edges of such a 

design – how did the tiler finish the pattern when 

they got to the edge of the floor?  Could you do it 

differently?   

   None are visible on this photo, but there are also 

places where smaller units of this pattern can be 

found as a way of fitting it into the space available, 

and these provide a context for looking at number 

Figure 4.   The Choir ,  

Ely Cathedral,  UK 
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sequences.  This can be motivated by asking children to imagine they are the tiler – 

how many of each type of tile do they need for a given space?  If tiles have to be 

made to order, it is important to have enough, but too many would be wasteful. 

   Again the basic pattern can be abstracted for students to work on (Figure 5Error! 

Reference source not found., and the worksheet can be downloaded from 

http://motivate.maths.org/teachers/MathsArt/PatternsNumbersWorksheet.pdf).  For 

each diagram, students were first asked how many of the large black squares there 

would be – after ensuring they understood that the shape that looks like a diamond is 

in fact square.  Then they worked on the numbers of small squares, rectangles and 

triangles (exemplars coloured in 

Figure 5).   

   Students who do not yet have any 

knowledge of algebra can still be 

asked to think about how these 

numbers are related to the diagram 

number, what is special about the 

number sequence each shape gives, 

and how many of each shape the 

next diagram up might require.  After the children, had worked out how many of each 

shape there were in the three patterns shown, I asked them to predict how many of 

each shape tile the fourth pattern might require.  We then discussed their suggestions 

and their reasons for making them, then added a row and column to the third diagram, 

to check visually who was right.   

   Most had noticed that the large squares give a sequence of square numbers (1, 4, 9, 

…) and that the small squares also give a sequence of square numbers, but starting 

from 4 rather than 1.  The sequence for the rectangles is harder, but on prompting they 

were able to tell me that the numbers form a sequence of multiples of 4 (4, 12, 24, 

…).  This sequence is particularly interesting, and can be used to challenge the 

brightest students.  What will the next value in the sequence be?  (It is 40).  How can 

we predict what the next multiple of 4 will be?  (This sequence is 4 multiplied by the 

triangle numbers, ie. 1 × 4, 3 × 4, 6 × 4, 10 × 4, …).  This raises the question as to 

where the four comes from and why we have the triangle numbers there. 

   Identifying the number sequence for the triangles (4, 16, 36, …) is also difficult 

working just from the numbers, but looking at the diagrams makes it obvious that 

there are four triangles for each large square, so we have a sequence which is four 

times the square numbers, ie. 1 × 4, 4 × 4, 9 × 4, ….  

   In all the groups who have done this particular activity, there were children able to 

explain the patterns they had observed verbally, often giving different perspectives 

from those I had noticed.  Almost all children were able to give a reason for why we 

might expect to find square numbers and multiples of 4 in such a tiling pattern. 

3. Number patterns and sequences (using algebra) 

   Any of these number sequences could also be used with older students who are 

learning algebra.  Having found descriptions of the sequences, the question is then to 

write them as algebraic formulae, so that they can predict how many of each 

individual tile would be required for any size pattern.  There are other floor patterns 

from the Ely Lady Chapel (Figure 6) which could be also be used in this way.  This 

particular pattern is visually very simple, but like the more complicated patterns, it 

can be made mathematically very rich. 

Figure 5.  Tiling pattern, Choir, Ely Cathedral, UK 
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   The lines drawn onto Figure 6 focus the 

attention on a particular sequence of stages 

of the pattern.  The number of additional 

black (or grey) tiles at each stage gives a 

sequence of odd numbers (1, 3, 5, 7, 9, …), 

and the total number of black triangles at 

each stage is a square number (1, 4, 9, 16, 

25, …).   

   Students could be asked to find other ways 

to demonstrate this result using small card 

tiles, and then to describe their results 

algebraically.  They should also be 

challenged to explain the results.  Why is it 

the next odd number which is added at each 

stage? Why is the total number of tiles 

always a square number?  Are there other ways that these particular number 

sequences can be demonstrated in a tiling pattern?  Having found formulae for either 

the black or the grey tiles, how do our formulae change if we consider the black and 

the grey tiles together? 

   Viewing this section of floor from a different perspective also allows the triangle 

numbers to be observed visually (Figure 7).  Lines are again added to the photo to 

focus attention this time on a triangular 

pattern.  The number of either black or grey 

tiles added at each stage is the next whole 

number (1, 2, 3, 4, …) – why is it different 

from what we observed with a square 

pattern?  If we look at the total number of 

triangles of the given colour, then we have 

the sequence of triangle numbers (1, 3, 6, 10, 

15, …).  How does this relate to the square 

number pattern we observed earlier?  Can we 

write algebraic formulae to describe these 

patterns?  And again, if we consider the 

number of black and grey tiles together, how 

does that change the formulae? 

4. Cosmati tilings 

Westminster Cathedral in London, which is a twentieth 

century Roman Catholic cathedral, has floor tilings in 

the style of the Cosmati tiling designs (Figure 8) first 

developed in medieval Italy.  The name Cosmati is that 

of the Roman family who first created inlaid 

ornamental mosaic designs, using marble from ancient 

Roman ruins, and arranging the fragments in geometric 

patterns.  They rapidly developed a distinctive style.  

Similar medieval designs are found elsewhere in 

Europe, and in twentieth century work also.  These 

designs can be used with students in the 12-15 age 

range for a number of investigative tasks. 

Figure 8.   Cosmati tilings, 

Westminster Cathedral, London 

Figure 6.  Floor tiling, Lady Chapel, Ely 

Cathedral, UK 

Figure 7.   Floor tiling, Lady Chapel, Ely 

Cathedral, UK 



 5 

   One starting point is to give students a basic motif, such as those in Figure 9, which 

they can use to tessellate an area.  Both motifs can be tessellated in either a linear or a 

radial direction, giving different designs, and with different challenges to consider 

about how the edge of a design will be 

defined.   

   The question they should then 

investigate is that of finding formulae for 

the numbers of each type of tile of which 

the motif is comprised for a given floor 

area.  The difficulty of this activity will 

depend on the motif chosen and the shape 

of the final area, so the task can be made 

easier or harder, as required.   

5. Using software to create tilings: 

Thinking geometrically 

Computer programs can also be used to explore tiling patterns with older students.  

The programming language, Logo, is ideal for this, and it is freely available from 

http://www.softronix.com/logo.html.  There are versions for younger children which 

use ‘turtles’, the name given to the cursor (presumably because it looks a bit like a 

turtle!).  All the programs associated with article are available at 

http://motivate.maths.org/teachers/teachers.php#topics and the Logo webpages 

include links to sites which introduce Logo and give more detail about the commands 

and putting them together to produce programs (known as Procedures). 

   Basic commands include drawing a line of a given length in a forward or backward 

direction, and turning through a specified angle.  These can be built into regular 

polygons using the Repeat command.  Creating a Procedure to draw a particular shape 

is a way of building up a library of programs which can then be used in other 

programs. Using a variable for a side length means that figures can then be drawn in 

any size.  This also helps students develop their concept of an algebraic variable. 

   Suppose we want to create patterns based on the motifs in Figure 9.  Both are 

composed of equilateral triangles, so a first step might well be to create a Procedure to 

draw an equilateral triangle 

(Figure 10).  The left-hand 

version gives the basic 

program commands in a 

correct sequence (fd means 

‘forward’, rt means ‘turn 

right’ through the specified 

angle, ht means ‘hide turtle’ 

or cursor, :a is a variable 

length, for which a suitable 

side length needs to be 

substituted when the program is executed, for instance, triangle 200 [no colon 

required] would give a triangle with side length 200 pixels).  The right-hand version 

uses a Repeat command, and is thus more economical. 

   This is a very simple program, but it requires students to think through each step in 

drawing a triangle, including the angles to be turned through after each length 

forward.  Beginners often expect the angle required to be 60 degrees, because they are 

thinking about the internal angle in the triangle, not the external angle.  The turn of 30 

Figure 9.   Motifs 

to triangle :a 

rt 30  

repeat 3[fd :a rt 120] 

lt 30 

ht 

end 

to triangle :a 

rt 30  

fd :a rt 120 

fd :a rt 120 

fd :a rt 120 

lt 30 

ht 

end 

Figure 10.   Logo programs to create an equilateral triangle 
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degrees right at the start and 30 degrees left at the end are to turn the ‘turtle’ from 

facing directly upwards at the start, and then to put it back in that position at the end 

of the program.  

   Now we have a procedure for equilateral triangles of any size, we can use it to build 

the triangular motif in Figure 9.  With any complicated shape, it is always good 

practice to start by drawing a sketch on squared or isometric paper, so that 

relationships between side lengths and angles can be considered.  This is also very 

helpful when the program does not do what was intended, and 

needs to be corrected. 

   In programming the motif (Figure 11), the first thing I 

considered was the relationship between the side lengths of the 

three different sized equilateral triangles.   The small triangles 

(shaded in Figure 11) necessarily determine the side length of 

the triangle directly enclosing them, but what about the outer 

triangle?  Drawing in similar small triangles between the two 

enclosing triangles shows that if the side length of the small 

triangles is a, then the first enclosing triangle has a side length 

of 3a, and the outer triangle a side length of 6a.  (Question: does this mean the side 

length of another enclosing triangle would be 10a, because the multiplying factor is a 

triangle number, and if so, why?)   

   On my first attempt at creating a program for this motif, I decided to start with the 

small triangles, working outwards from the centre.  Later it became clear to me that it 

would be more useful in building up a tessellation of these motifs if the turtle started 

and finished at one vertex of the outer triangle.  Something else that only became 

clear to me after a little while, was that using horizontal and vertical movements to get 

the cursor from one position to another was not the most efficient way to proceed on 

an isometric framework, and that if I needed to use multiples of 60 degree turns with 

the side length of the triangle, rather than calculating their heights2.   

   My next decision was to have 

‘up’ and ‘down’ versions of 

each of the programs, rather 

than having to worry about the 

orientation of the triangles and 

the motifs produced from them.  

Again I decided later that this 

was not  necessary, but some of 

the programs given retain this 

aspect.  Using the Procedures to 

triangleu :a and to triangled :a, 

which create equilateral 

triangles of side length a,  one pointing upwards and the other pointing downwards, I 

created ‘up’ and ‘down’ versions of the motif, to trimotifu :a and to trimotifd :a 

(Figure 12).   

   The programs given (http://motivate.maths.org/teachers/teachers.php#topics) are not 

the first or even the second versions I created!  As I progressed through each stage of 

this project, I realised that I needed to correct approaches I had taken in earlier stages.  

As I began to build up longer programs, producing more complex drawings, I also 

                                                
2
 Logo does recognise a sqrt () command, where the value whose square root is required is put in the 

brackets. 

Figure 11.   Triangular 

motif showing edge 

relationships 

Figure 12.   Executing triangleu 25, triangled 25, trimotifu 25 

and trimotifd 25 



 7 

found it very helpful to tabulate my programs, giving the starting and finishing 

positions of the cursor, and a brief description of what the program would do. 

   The programs available on the webpages are the result of several hours of work, 

requiring considerable amounts of mathematical thinking, problem-solving and 

trouble-shooting.  They are also work-in-progress!  Working out complete sets of 

programs like these for the first few stages of a linear or hexagonal tessellation is 

time-consuming, and very frustrating for the beginner.  However, working on the 

simpler programs is an excellent way to ensure that students understand the 

relationships between length and angles in geometrical motifs like this – and any 

misconceptions will show up in the drawings on screen!  Teachers and students are 

welcome to use my programs at 

http://motivate.maths.org/teachers/teachers.php#topics.  However, I should point out 

that these are not the only or even necessarily the most efficient ways to produce the 

motifs and the tessellations. 

 

    

   A radial tessellation of the triangular motif is shown in Figure 13.  Stage 1 is 

perhaps anomalous, and it might be considered preferable to omit this.  If we consider 

the number sequence for the motifs which arises from this tessellation, the following 

table (Table 1) can be drawn up: 

 
Table 1.   Analysing the triangular tessellation 

 

.Layer number, n No. of motifs in added layer 

Layer 1 1 

Layer 2 6 

Layer 3 18 

Layer 4 30 

Layer 5 ? 

Layer 6 ? 

 

   What is happening here is that at each stage after the initial motif, we have a bigger 

hexagon, and the side length is increasing from 1 unit to 3 units to 5 units.  It would 

be reasonable for students to predict that the side length will continue to increase by 

two units with each new layer, because an additional motif is required at each end of 

each edge.   This helps students to predict what might happen in the next stages and to 

justify their predictions.  This information can then be incorporated into the table 

(Table 2): 

Figure 13.   Hexagonal tessellation from triangular motif 
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Table 2.    Further analysis of the triangular tessellation 

 

.Layer number, 

n 

No. of motifs in added 

layer 

Side length (no. of 

motifs) 

Total no. of 

motifs 

Layer 1 1   

Layer 2 6 = 6 × 1 1 6 

Layer 3 18 = 6 × 3 3 24 

Layer 4 30 = 6 × 5 5 54 

Layer 5 ? 6 × 7 = 42 ? 7 ? 54 + 42 = 96 

Layer 6 ? 6 × 9 = 54 ? 9 ? 96 + 54 = 150 

 

   Students can make predictions about the number of motifs, or the side length, for 

successive stages of the tessellation and check them by adapting the programs to draw 

them.  If their predictions are correct, then they can go on to generalise them into 

algebraic formulae. 

   A similar project could be undertaken with the star motif, although this has added 

complexity since the star cannot be used to tessellate an area without either leaving 

holes or including hexagons. 

6. Conclusions 

Apparently simple floor tilings can be used to motivate a range of mathematical 

discussion and investigation for a wide range of different ages and abilities.  

Examples of tiling patterns and lessons derived from them have been given, and the 

worksheets and programs used in these lessons are available online 

(http://motivate.maths.org/teachers/teachers.php#topics).  However it is my hope that 

teachers reading this article will be inspired to look around them at the patterns in 

buildings (on walls, floors, ceilings, pavements, …) around them, and to use them in 

similar ways.  Even the simplest of tiling patterns can be a rich source of mathematics 

and prompt good mathematical discussion. 


